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1.0
1.1

INTRODUCTION

Purpose

This document describes the structure and usage of EISPACK,a collection of

Fortran subroutines for the computation of eigenvalues and eigenvectors of

matrices. EISPACKwas developed at Argonne National Laboratory, and
represents the collective effort of many numerical analysts. The subroutines
are consi dered to be the state-of-the-art in general purpose ei genanalys i s

software and are widely used in industrial, scientific, and engineering
applications.

For the users of the MAINSTREAM-EKS/VSPCyber and Cray computer systems and

of the IBMMVS/TSOcomputer systems the subroutines in EISPACKare available

as one of the "Speciality Mathematical Libraries" supported by BCS.

Furthermore, some of the most frequently used EISPACK routines are also

integrated (under different names) into the linear algebra section of BCSLIB,

the- general purpose mathematical library on most BCS facilities (including

computers such as POP and VAX, on which EISPACK itself is not available).

Finally eigenvalue problems can also be solved interactively using the

EISPACKroutines embedded in the matrix computations laboratory MATLABon the
EKS CYBERcomputers.

Because of the richness of the problem and of the variety of available

EISPACKoptions, one of the main purposes of this document is to guide a
potential user to the correct choice of subroutines for a particular

eigenvalue problem. In addition, some mathematical background information
about eigenvalue problems and their numerical solution is provided, as well
as the necessary detai 1s on howto access EISPACKon various BCSsystems. A
prospective user of eigenvalue software should be aware that some

understanding of the mathematical background material is necessary to apply
EISPACKsuccessfully.
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1.2 Howto Use this Guide

Several types of questions naturally arise during the numerical solution of

an eigenvalue problem. The main body of this report consists of five chap-

ters, each one giving assistance with a particular class of questions:

Chapter 2 : Whattype of eigenvalue problem is to be solved?

(e.g., symmetric, unsymmetric, generalized, etc.)

Chapter 3 : Whatcomputational task is to be achieved?

(e.g., all eigenvalues, some eigenvectors, etc.)

Chapter 4 : Whichsubroutine should be chosen for the given problem and task?

Chapter 5 : Howcan this routine be accessed on BCSfacilities?

What is the calling sequence?
Howcan documentation be obtained?

Chapter 6 : What do the results mean?

(e.g., error flags, how accurate are the results?)

Since these are the most commonquestions a user may ask, it is hoped that

this guide is essentially self-contained. For those encountering difficul-

ties beyond the scope of this report, a consultation service is provided (see
section 1.3.2). Someextra references are listed in section 1.3.1.

The casual user - someone encountering EISPACKfor the first time, or someone
who wants a quick and easy solution to a matrix eigenvalue problem, may skip
over some sections, depending on background and experience, and consult only

those sections relevant to the situation. For example, a user familiar with

eigenvalue problems in general, but unfamiliar with EISPACK, may go
immediately to Chapter 4.
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An option available to the novice user is Appendix A, which is a programmed
tutorial that guides the reader through a step by step solution of the
eigenvalue problem.

Finally, for the sophisticated user and for those who need extra information,

the next section lists available help beyond this report. Users who

encounter some unforseen difficulty in solving eigenvalue problems may want
to utilize some of these other resources.

1.3 Further Information
1.3.1 References

(see also Appendix B)

The complete EISPACKdocumentation can be found in two reference books:

Smith et.al. Matrix Eigensystem Routines - EISPACK Guide [1]

Garbowet al. Matrix Eigensystem Routines - EISPACKExtension [2]

These references are not readily available and may interest only the
sophisticated user.

The documentation of the EISPACKbased subroutines in BCSlIB is available in
the

BCSlIB User's Manual [3].

Information of general interest for users of mathematical software can be
found in the

Math/Stat Software Newsletter [4].

Current and back issues of the Newsletter can be obtained from the Newsletter

editor at (206) 575-5113. Newsletter issues with relevant articles are:

Vol.7, No.3: MATlAB

Vol.7, No.1: BCSlIB and Mathematical Software libraries

Vol.3, No.1: EISPACK

Vol.2, No.2: "RowDimension" in Matrix Algebra Software.
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1.3.2 Consultation Services

BCSmaintains a staff of experts to provide a consultation service for its

software users. Help is provided on which routines are available, on

appropriate mathematical techniques for a particular problem, and on software

usage difficulties encountered by a user. Those needing such advice should
contact their local BCSconsultation service whowill provide assistance and,

where necessary, put them in contact with the appropriate specialist.
Alternatively, the consultation service listed below may be contacted

directly.

For documentation on the Speciality Mathematics Libraries (including

EISPACK),contact the Math/Stat Newsletter editor at (206) 575-5113.

For consultation on usage of BCSLIB or the Speciality Mathematics Libraries

(i ncluding EISPACK) contact the Math/Stat Libraries consultation service at

(206) 575-5078.

1.3.3 On-line Information (General)

Summaryinformation on mathematical, statistical, and utility libraries and
packages, consultation services, and the quarterly Newsletter is available

on-line. It is approximately 15 pages long and is updated regularly to

reflect software or service changes. Users of EISPACKare encouraged to
obtain a personal copy on a regular basis to be informed about recent
changes.

On the EKSCYBERsystem a copy can be obtained by the following
GET,MTHINFO/UN=EKSAPP.

ROUTE,MTHINFO,OC=PR,MB=mailbox,UN=RJEuser number.

On the TSO systems use the following JCL statement:

//EXEC MTHINFO.

commands:

4



--,-

2.0

2.1

MATHEMATICALBACKGROUND

General Remarks

Notation. In this report the following notation is adopted. Columnvectors

are denoted by lower case bold letters like x,y,z. The components of x are

real or complex numbers Xj, j=1,2, .. .n, where n is the dimension of x.
Upper case letters like A, B, C denote matrices and Greek letters like A, a

denote scalars. The entries of the matrix A are given by aij, i.e. A=(aij),
i,j = 1,2, ... n. The transpose of A is given by AT, and the complex

conjugate transpose of a matrix A or a vector xis denoted by A* or x*,

respectively. The scalar quantity Ilxll = Jx*x is the ordinary Euclidean
norm of x .

This chapter discusses the various forms in which matrix eigenvalue problems

can be encountered. Certain properties of the coefficient matrix (or
matrices) imply certain other properties of the eigenvalues and vectors,
which can maketheir numerical computation easier and more robust. EISPACK

subroutines take advantage of these special matrix properties, when

appropriate, and therefore guarantee more reliable and/or faster results. It

is therefore to the advantage of the user to be aware of any special features

of his eigenvalue problem. The purpose of this chapter is to discuss the

various forms of the eigenvalue problem, the corresponding mathematical

properties of the eigenvalues and vectors, and how these special properties

are exploited by the algorithms in EISPACK.

Eigenvalue problems can be stated in several different forms. The most common

one is: given an n by n matrix A, find scalars A and vectors XfO such that
A x = A x. (1)

be refered to as the standard eigenvalue problem. The

problem is discussed in more detail in section 2.2.

Equation (1) will

standard eigenvalue

A more complicated form is the so called generalized eigenvalue problem:

given n by n matrices A and B find scalars A and vectors x f 0 such that

A x = A B x . (2a)
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Related to the generalized eigenvalue problem are the ABeigenproblem:

A B x = A x , (2b)

and the BAeigenproblem

B A x = A x . (2c)

These three problems are discussed in section 2.3. A naive approach to

problems (2abc) would be to form the matrices B-1A, AB, or BA explicitly and

then regard the problem as a standard eigenproblem. This, however, is

sometimes difficult, and may even be impossible in the case (2a). It is

unwise in cases (2bc) if the matrices satisfy certain special properties

which can be utilized by the algorithms in EISPACK.

There are some other forms of the eigenvalue problem which are occasionally

encountered, like the quadratic eigenvalue problems or A-matrix problems.

Although there are no EISPACKroutines which are explicitly designed for the

solution of these problems, some suggestions for their solution will be made
in section 2.4.

In section 2.5 the singular value decomposition of a matrix will be

discussed. For some applications the singular values and vectors instead of

the eigenvalues/vectors are needed. Examples are the numerical determination
of the rank of a matrix, the pseudo-inverse of a rectangular matrix, or the
solution of overdetermined linear systems. Finally, section 2.6 gives an

overview of the type of numerical methods used by EISPACK.

For a first reading it is suggested that the casual user of this guide

proceed as follows:
If the problem is a standard eigenvalue problem, read section 2.2

(and maybe section 2.6). Then continue with Chapter 3.
If the problem is a generalized, an AB, or a BAproblem read

sections 2.2 and 2.3 (and maybe"2.6). Then continue with Chapter 3.
If the problem is none of the above, then read sections 2.4 and

2.5, and/or ask the consultants for help.
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2.2 TheStandard Eigenvalue Problem.

2.2.1 Mathematically Different Forms of the Standard Eigenvalue Problem.

As mentioned in the previous section

stated as follows: given an n by n real

and vectors x f 0 such that
A x = A x . (1)

A scalar A which satisfies (1) is called an eigenvalue of A and the

corresponding vector xis called an eigenvector of A. The pair A, xis
sometimes referred to as an eigenpair. By convention x=O is not considered to

be an eigenvector. Also note that if XfO is an eigenvector, then ax for an
arbitrary scalar (1 is also an eigenvector. If one talks about the

eigenvector, it is usually assumed that x is normalized in some way, for

example Ilxll = 1.

the standard eigenvalue problem is
(or complex)matrix A, find scalars A

If the eigenvalue problem is stated as above and nothing else is knownabout

A the problem is called the real general (or complex general) eigenvalue

problem. It is important to keep the following facts about the real (or
complex) general eigenvalue problem in mind:

1) There are always n eigenvalues AI, A2, ... An, which may not be
distinct.

2) The eigenvalues may be complex. (This is true even if A is real.
Then the eigenvalues occur in complex conjugate pairs.)

3) There maynot be n different eigenvectors. (Even though there are n
eigenvalues).

4) Even if there is a set of n eigenvectors, some of them maybe
arbitrarily close to each other, and consequently hard to

distinguish from each other numerically.

These mathematical facts have some important consequences for the practical

computation of eigenvalues/vectors in the real (or complex) general case:
Even for the real general eigenvalue problem one should expect to
obtain complex answers.

It may be difficult or impossible to compute a full set of
eigenvectors.
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All these difficulties disappear if the matrix A has one special property.

The real matrix A is called symmetric, if A = AT, i.e. if aij = aji for i,j =
1, 2 ... n. Correspondingly a complexmatrix A is called Hermitian, if A = A*

, i.e. aij=aji for i,j = 1, 2, ... n. Important facts about the real
symmetric (or the complex Hermitian) eigenvalue problem are:

1) There are always n eigenvalues AI, A2, ... An, which may not be
distinct.

The eigenvalues are all real. (This is true even if A is complex
Hermitian.)
There are always n different eigenvectors.

Eigenvectors x, y corresponding to different eigenvalues are

orthogonal, i.e. xTy =0 (or x*y = 0 in the complex Hermitiam case).

Consequently, they are easy to distinguish numerically.

2)

3)

4)

These facts about the real symmetric (or complex Hermitian) eigenvalue

problem make the actual computation of eigenvalues/vectors much easier as
compared to the rea 1 (or comp1ex) genera1 case. Correspondi ngly, there are

different algorithms which are appropriate. Obviously the algorithm for the
general case will also work for the symmetric (or Hermitian) case, but it is

to the advantage of the user to use the more specialized and therefore more
efficient algorithm.

The distinction between symmetric and nonsymmetric matrices is of central

importance for eigenvalue calculations. Symmetryshould be always utilized in

eigenvalue computations, because it guarantees better results (see section

6.3). This distinction is therefore muchmore important than the distinctions
which will be made in the next subsection.
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2.2.2 Different Waysof Storing the Coefficient Matrix

In this subsection the various possibilities of how to store the coefficient
matrix wi11 be di scussed. The differences between the various forms concern

only the implementation. The mathematical properties of the

eigenva1ues/eigenvectors are not affected by these different forms of the

eigenvalue problem. The distinctions here are made because of the structure
of EISPACK,but not because of mathematical necessities.

The symmetry of A can also be utilized in order to save storage. It is only

necessary to store the mt(n+l)/2 entries of the lower triangular part of A.

They can be stored in a one dimensional array by rows in the order all, a2l,

a22, a3l, a32, a33, a4l,... . This representation of the real symmetric
matrix A will be called real symmetric packed.

A similar idea can be used if A is an n by n complex Hermitian matrix. Each

complex entry can be represented as a pair of rea1s as follows: aij =
(bij,Cij). If the real parts of the entries of the lower triangular part of A
are stored in the lower triangle of a two dimensional array, and if the

corresponding imaginary parts are stored in the upper triangle, then A will

be called complex Hermitian packed. For example if n=4 the matrix A is stored
as follows, using the usual co1umnwise storage notation for doubly
subscripted arrays:

bll c21 c3l

b2l b22 c32

b3l b32 b33

b4l b42 b43
Note that the imaginary parts of

stored explicitly.

C4l

C42
C43

b44
the di agona1 entries are zero, and are not

Certain subroutines in EISPACKare tailored to this packed storage mode of
matrices. The user who is concerned about storage limitations may want to
consider these routines instead of the more general ones.
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The same can be said about real symmetric band matrices. If A is a real

symmetric matrix of order n, then it is said to be banded if there is an

integer k, (O.::k < n) such that aij = 0 whenever Ii - jl > k. For example,
when n=5 and k=2, the matrix A has the following form:

all a21 a31 0 0

a21 a22 a32 a42 0

a31 a32 a33 a43 a53

0 a42 a43 a44 aS4

0 0 aS3 aS4 ass

For symmetric banded matrices, storage is saved by storing only the lower

triangle of A in a two dimensional array of order n*(k+l). The matrix A above

is then stored as follows, where (.) stands for an arbitrary value:

(.) (.) an
( . ) a21 a22
a31 a32 a33

a42 a43 a44

aS3 aS4 aS5

EISPACK does not provide routines for the corresponding banded complex

Hermitian case. However, it does provide routines for an important class of

banded symmetric matrices. These are the real symmetric tridiagonal matrices,

i.e. banded matrices with k=1. For example the symmetric tridiagonal matrix

corresponding to n=S is given by

all a21 0 0 0

a21 a22 a32 0 0

0 a32 a33 a43 0

0 0 a43 a44 aS4

0 0 0 a54 a5S

Here the diagonal and subdiagonal elements are stored in two one-dimensional

arrays. Again, there is no special subroutine for complex Hermitian

tridiagonal matrices.
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The last class of matrices for which EISPACKprovides special ro:.:tines are
sign-symmetric real tridiagonal matrices. These are tridiagonal real matrices
whose offdiagonal elements have matching signs, that is , for all i,

sign(ai,i+l) = sign(ai+l,i)' Although these matrices are not. symmetric, the
properties of their eigenvalues and eigenvectors are the same as l~sted above

for real symmetric matrices.

At th i s

f or the

classes
matrices

point it is appropriate to summarize the above classification scheme

standard eigenvalue problem. The relationship between the various

is exhibited in the following two tree structures, one for real

and one for complex matrices.

I Real Symmetric Packed I

Sign Symmetric Tridiagonal

Real General

Real Symmetric Tridiagonal

Figure 2.1. Classes of Matrices for the Real Eigenv~lue Pla~lem.
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Complex General

Complex Hermitian

Complex Hermitian Packed

Figure 2.2. Classes of Matrices fo~ the Complex Eigenvalue Problem.

Each box in the two trees corresponds to a class of matrices for which

EISPACK provides the implementation of a special algorithm. At this point the
"casual" user with a problem to solve is encouraged to locate the
corresponding box which contains the right algorithm. There are several facts

to remember about choosing the "right box":

The classes at the lower level of the tree are alwiiys completely

included in the classes above, which ~eans, for example, that a real

symmetric tridiagonal problem can always be solved using the algorithm for
real symmetric matrices.

- However, in terms of efficiency and reliability it pays to choose

the box which most closely fits the given problem. The reader is especially

urged to make use of any symmetryin the problem.
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2.3 The Generalized Eigenvalue Problem

This section discusses generalizations of the standard eigenvalue problem
involving two real n by n matrices A and B. The generalized eigenvalue
problem has the form (c.f. section 2.1):

A x = A B x . (2a)

EISPACKprovides an algorithm which solves the generalized eigenvalue problem

in its original form (2a). This algorithm is more efficient than the

alternative of reformulating (2a) to

B-1A x = A x,

and then solving the standard eigenvalue problem for B-1A with one of the
methods from section 2.2. Besides being inefficient, forming B-1A may be

inaccurate or even impossible, if B is ill-conditioned or singular. For these

reasons forming B-1A is not recommended.

The eigensystem of (2a) has the same features as the eigensystem of (1) in
the real general case (see section 2.2), but the following additional cases
may occur:

Vectors z, with z t 0 and with Bz = 0 are regarded as eigenvectors.
The corresponding eigenvalue is considered to be infinite.

If there is an eigenvector z t 0 with Az = 0 and Bz = 0 then every
real number is an eigenvalue correponding to that vector.

The algorithm used in EISPACKis able to detect these special cases by

computing pairs of scalars a and a which satisfy

a A x = a B x .
examination of the ratios A = a/a may then reveal the special cases

details see section 3.3.1 in [2] ).

A carefu 1

(for more

Fortunately in many practical applications the matrices A and B are real

symmetric matrices, and B is positive definite. (A matrix B is called

positive definite if all its eigenvalues are greater than zero). The
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2.3 The Generalized Eigenvalue Problem

This section discusses generalizations of the standard eigenvalue problem
involving two real n by n matrices A and B. The generalized eigenvalue

problem has the form (c.f. section 2.1):

A x = A B x . (2a)

EISPACKprovides an algorithm which solves the generalized eigenvalue problem

in its original form (2a). This algorithm is more efficient than the

alternative of reformulating (2a) to

B-1A x = A x,

and then solving the standard eigenvalue problem for B-1A with one of the
methods from section 2.2. Besides being inefficient, forming B-1A may be

inaccurate or even impossible, if B is ill-conditioned or singular. For these
reasons forming B-1A is not recommended.

The eigensystem of (2a) has the same features as the eigensystem of (1) in

the real general case (see section 2.2), but the following additional cases
may occur:

Vectors z, with z + 0 and with Bz = 0 are regarded as eigenvectors.
The corresponding eigenvalue is considered to be infinite.

If there is an eigenvector z + 0 with Az = 0 and Bz = 0 then every
real number is an eigenvalue correponding to that vector.

The algorithm used in EISPACKis able to detect these special cases by
computing pairs of scalars a and ~ which satisfy

~Ax=aBx.

A careful examination of the ratios A= aI~ may then reveal the special cases

(for more details see section 3.3.1 in [2] ).

Fortunately in many practical applications the matrices A and B are real
symmetric matrices, and B is positive definite. (A matrix B is called

positive definite if all its eigenvalues are greater than zero). The
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resulting real generalized symmetric eigenvalue problem has properties

correspond i ng to the real symmetrice i genprob1em di scussed insect ion 2.2.
There are n real eigenvalues and n corresponding linearly independent

eigenvectors. Pairs of different eigenvectors x,y are no longer orthogonal in
the ordinary sense, however it does hold that xTBy = 0 . Whatever has been

said about the relationship between real general and real symmetric

eigenvalue problems carries over correspondingly to the real generalized and
the real generalized symmetric eigenvalue problem

There are two additional less commonforms for the symmetric generalized

eigenvalue problem which can be solved directly by EISPACK,namely the
problems

AB x = A x , (2b)

BA x = A x , (2c)

where A and B are real symmetric and B is positive definite. These two

problems, refered to as the AB (or BA) eigenvalueproblem, have the same
properties as the generalized symmetric eigenvalue problem.

The bas i c four genera 1i zed e i genva1ue prob 1ems for whi ch there are so1ut ion

algorithms provided in EISPACKare summarized in the table below.

Matrix B

real

positive definite

positive definite

positive definite

Table 2.1. Classification of the Generalized Eigenvalue Problems.

14
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AX=ABx Real generalized real

AX=ABx Real generalized symmetric symmetric
ABx=u AB symmetric
BAx=AX BA symmetric



2.4 Quadratic Eigenvalue Problems and A-Matrix Problems

(see also [2], section 3.3.5)

In some applications, quadratic eigenvalue problems of the form

(A2CO+ ACI + C2) x = a (3)

arise, where CO, Cl, and C2 are real n by n matrices. The scalars A, which
make the matrix in parentheses singular, and possibly also the corresponding
null vectors x are to be found. This problem can be solved by forming the 2n
by 2n matrices

A = FCI -C2

LI a

Co a
B =

a I

The problem (3) is then equivalent to the generalized real eigenvalue problem
(see section 2.3)

A z = A B z ,

where z =~~. This can be solved using the methods for (2a).

More generally a A-matrix problem is given by

C(A) x = a , (4)

where each entry of the real n by n matrix C(A) is a function of the

parameter A. Solutions to (4) are values A, for which C(A) is singular,

together with the corresponding nullvect~rs. If C(A) = ArCO + Ar-ICI + ... +

ACr-1 + Cr with constant matrices Ci, i=I,...r, the problem (4) can be

reduced to a generalized eigenvalue problem by the same method described

above. Numerical algorithms for more complicated functional dependencies of

the entries of C(A) require consultation.

15



2.5 The Singular Value Decomposition

(adapted from [2], section 2.4.1)

The singular value decomposition (SVD) proceeds from a real rectangular

matrix A with m rows and n columns. Although m and n are not constrained, the

primary applications of the decomposition have m ~ n. The decomposition is
commonlywritten

A = Ur VT (5)

where r is an n by n diagonal matrix with entries a. ~ 0, j=1, 2, n, andJ
U and V are matrices with orthonormal columns of dimensions m by nand n by n

respectively. Note that U has the same dimensions as A and that V has as many
columns as A but is square. The elements of E are called the singular

values of A, and the columns of U and V are the left and right singular

vectors, respectively.

Theoret i cally the SVDcan be characteri zed by the fact that the si ngu1ar

values are the square roots of the eigenvalues of ATA, the columns of V are
the corresponding eigenvectors, and the columns of U are certain eigenvectors

of AAT. However this is not a satisfactory basis for computation, because

roundoff errors in the formation of ATAoften destroy pertinent information.

One fundamental application of the singular value decomposition is the

determination of the rank of a matrix. Since the orthogonal transformations U
and V preserve 1inear independence, the ranks of A and E are the same, and

the rank of A can be found by counting the number of singular values greater
than zero. In a practical computation, however, it is likely that even for a

rank deficient matrix none of the singular values will be exactly zero.

Therefore one has to introduce a threshold 'T , which will depend on the
problem at hand, and regard all singular values less than 'T as effectively

zero. For the choi ce of 'T and for other app1i cat ions of the SVDsee [1],
section 2.4..1.
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2.6 Algorithms

(adapted from [5])

This is not the place to describe all the algorithms employed by EISPACK, nor

to assess their relative performance. Here only a little mathematical

background will be presented, and two examples will be shown which illustrate

some of the more frequently used algorithms.

Almost all the algorithms
transformations. Two matrices

matrix S for which

B = S-1AS.

The transformation S-1AS is called a similarity transformation. Similar

matrices have the same eigenvalues, and the eigenvectors of one are easily
obtained from the other. If B were diagonal, then its diagonal elements would

be the eigenvalues of A. Moreover the columns of S would be the eigenvectors
of A.

used in EISPACK are based on similarity

A and B are similar if there is a nonsingular

It is not necessary, and numerically it may not even be desirable to

completely diagonalize a matrix. If B is merely triangular, then the

eigenvalues are still on the diagonal and the eigenvectors can be computed by

a fairly straightforward substitution process.

A real matrix S is called orthogonal if STS = I or, equivalently, ST = S-1.
A complex matrix S is called unitary if these same conditions hold with ST

replaced by S*. Similarity transformations based on orthogonal and unitary
matrices are particularly attractive from a numerical point of view because

they do not magnify any errors that may be present in the input data, or that
may be introduced during the computation. For this reason numerical linear

algebra is fortunate to have available the following theorem due to Schur:

any matrix can be triangularized by a unitary similarity transformation.

Most of the techniques employed in EISPACK utilize variants of Schur's

theorem. It is usually not possible to compute Schur's transformation with a

finite number of rational arithmetic operations. Instead the algorithms

17



employ a potentially infinite sequence of similarity transformations

-1
Ak+1= S kAkSk

for which Ak approaches an upper triangular matrix. The sequence is
terminated when all of the subdiagona1 elements of a particular matrix Ak are
less than the roundoff errors involved in the computation. These elements can

then be set to zero without introducing any more perturbations in the
eigenvalues than have already been caused by the preceeding transformations.

The diagonal elements of the resulting matrix Ak are then the desired
approximations to the eigenvalues of the original matrix. The corresponding

eigenvectors can be readily computed if they have been requested.

For reasons pointed out in section 2.2 it is important to have special

algorithms which deal with symmetric matrices. The only simi larity

transformations which also preserve symmetry are those based on orthogonal

matrices. The following example outlines the basic steps used in the
algorithm employed by EISPACK.The input matrix is:

54321

4 5 4 3 2
34543
2 345 4

1 2 3 4 5

The initial orthogonal similarity transformations which are carried out

reduce the matrix to tridiagonal form. An n by n matrix requires n-2 such

transformations, each of which introduces zeros into a particular row or

column of the matrix, while preserving the symmetry and preserving the zeros
introduced by the previous transformations. In the case of the 5 by 5 example
above, the result of the first transformation is a matrix. which has three
zeros in the last row and column. The next transformation introduces two more

zeros into the fourth row and column. The final transformation places one

more zero in the third row and column. One obtains this tridiagonal matrix:

18



Since the result of the initial reduction is a symmetric tridiagonal matrix,

it can be stored in just two vectors - one with n components for the diagonal
and one with n-1 components for the offdiagonal.

EISPACK includes several routines for computing the eigenvalues of a real,
symmetric tridiagonal matrix. Many, but not all of these routines are

variants of the QR algorithm, originally published by Francis in 1961 and

perfected by Wilkinson and Reinsch in [6J.

The symmetric, tridiagonal QR algorithm produces a sequence of similar

matri ces whose offdi agona1 elements are decreas i ng in magnitude and whose
diagonal elements are approaching the desired eigenvalues. With the variant

of the algorithm used here the intention is to reduce the first offdiagonal
element most rapidly. After three similarity transformations one obtains:

Notice that all the offdiagonal elements have generally decreased in size,

and that the first offdiagonal element has decreased a geat deal. It has now

reached a size which is comparable to the roundoff errors made during the
calculation, and so setting it to zero can be regarded simply as another
roundoff error. The fi rst di agona1 element is now an accurate approximation
to one of the eigenvalues of the original matrix.

The next two iterations involve only the 4 by 4 submatrix. One obtains after

19

0.6594 -0.1438 a a a
-0.1438 0.9687 0.5678 a a

a 0.5678 5.3052 4.4192 a
a 0 4.4192 13.0667 -5.4772
0 a 0 -5.4772 5.0000

0.5484 0.0000 a 0 0
0.0000 0.7641 0.0085 0 0

a 0.0085 1. 2737 0.0167 0
0 0 0.0167 5.2501 -0.4103
a a 0 -0.4103 17.1637



The second offdiagonal element is now negligible and the second diagonal

element approaches another eigenvalue. Three more iterations are needed to
reduce the remaining offdiagonal elements to roundoff level. The final

diagonal matrix is

In this example a total of 15 similarity transformations were required, 3 for
the initial reduction and 12 for the QRiterations. The later transformations

involved considerably less arithmetic than the earlier ones because they were
done on matrices with more zero elements.

Let S denote the product of all the orthogonal similarity transformations

which were required, and let 0 denote the final diagonal matrix. Then S-1AS=
0, and hence AS = SO. This shows that the columns of S are the eigenvectors
of A. Moreover, since S is the product of orthogonal matrices it must be also

orthogona 1.

Nonsymmetric matrices involve somewhat.different techniques, although the
general approach of an initial reduction followed by some QRtype iteration

is still followed. Since there is no symmetry to be preserved, similarity

transformations can be based on nonorthogonal matrices. Algorithms which
employ elimination methods require less arithmetic, and hence are potentially

faster, than those which use orthogonal transformations. However, such

20

two iterations:
r
0.5484 0 0 0 0

0 0.7639 -0.0000 0 0

0 -0.0000 1. 2738 0.0003 0

0 0 0.0003 5.2362 -0.0315

0 0 0 -0.0315 17.1777

0.5484 0 0 0 0

0 0.7639 0 0 0

0 0 1. 2738 0 0

0 0 0 5.2361 0

0 0 0 0 17.1776



- - - - -- -

algorithms may produce somewhat less accurate results and, in extreme,
contrived examples, may be completely unstable. Deciding between these two

classes of algorithms involves tradeoffs between execution speed and
numerical reliability. When designing a general purpose library, such
decisions are difficult to make, and EISPACK therefore contains

implementations of both algorithms.

The following example illustrates the behavior of these algortihms for a real
general matrix. The input matrix is

54321
9 5 4 3 2

8 9 5 4 3

7 8 954

67895

A matrix A = (aij) is called an (upper) Hessenberg matrix if aij=O for all
i>j+1. As in the symmetric case the reduction to tridiagonal form, here the

reduction to Hessenberg form can be carried out in finitely many steps. The

application of the QR algorithm to a matrix in Hessenberg form can then be
carried out more efficiently.

In the example above there was very little growth in the size of the elements
during the initial reduction, so there was very little roundoff error
magnification. The next step is to carry out a variant of the QRiteration.
After a few iterates one obtains:

21

The fi rst step is to use a subroutine to produce the fo11owing Hessenberg
matrix: ..

5.0000 8.8889 4.0174 4.6055 2.0000

9.0000 12.2222 6.2902 6.4082 3.0000

0 16.2963 11.7891 10.9525 7.0000

0 0 -2.5925 -2.6545 -1. 9705

0 0 0 1.3901 -1.3569



Three of the eigenvalues are revealed in diagonal positions 1, 2, and 5. The
2 by 2 submatrix that includes diagonal positions 3 and 4 is the source of a

pair of complex conjugate eigenva1ues, -0.9511.:!:. 1. 5463i . The entire
computation is done with real arithmetic, even though the final results are
complex.

22

24.7514 -11.1821 -3.6155 12.9960 7.0641
0 3.6275 -1.3330 4.9235 6.0036
0 0 -1. 2203 -1.8985 -0 .4090
0 0 1. 2977 -0.6818 2.4406
0 0 0 0 -1. 4768



3.0 Solution Options

There are many possible requirements when solving the eigenvalue problem,

for example: compute all eigenvalues, compute only one eigenvalue and the

corresponding eigenvector, compute some eigenvalues and the corresponding

eigenvectors, etc. One way of providing for all these different options would
be to always compute the complete eigensystem, and then extract the desired

quantities. For many problems this may be very inefficient and wasteful.

This short chapter describes the different solution options provided by
EISPACK,together with some guidelines for chosing the proper option.

The standard options for the solution are:

A) All eigenvalues

B) All eigenvalues and some selected eigenvectors

C) All eigenvalues and all eigenvectors
D) The largest or smallest eigenvalues

E) The largest or smallest eigenvalues and the corresponding

eigenvectors
The eigenvalues in

The eigenvalues in

eigenvectors.
The solution options D-G apply only to symmetric (Hermitian, generalized

sYmmetric) eigenproblems.

F)
G)

a specified interval

a specified interval and the corresponding

These are all the capabilities provided by EISPACK. There are obviously many

computational tasks which arise in practice and for which there are no

corresponding solution options. Examples of these tasks are: finding all

eigenvalues of a real matrix which have a negative real part, or finding the

eigenvalue of a real matrix with largest (smallest) real part. All these and
many simi1ar tasks can be accomplished by using the appropri ate subroutines
with more general solution options. In some cases it may be possible to

combine or to modify EISPACKroutines for these tasks. The user may consult
the EISPACKGuide or seek help from the consultants (see section 1.3.2).
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One final rule of thumb concerning the choice of various solution options is
as follows:

If more than one fourth of the eigenvalues are needed it

faster to compute all the eigenvalues instead of using one of the
options.

24
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4.0

4.1

The EISPACKSubroutines

General Remarks

The purpose of this chapter is to guide the user to the appropriate
subroutine(s). It is assumed that after studying chapters 2 and 3, the user

with a specific eigenvalue problem has identified the appropriate problem

class and solution option.

There are some considerations to be be addressed before selecting a

subroutine. These concern the ways of using EISPACKon BCS computers. The
various possibilities are first discussed in section 4.2. The general

organization of EISPACKis explained in section 4.3. It is then a fairly
straightforward task to find the corresponding EISPACKsubroutine. Section

4.4 shows the EISPACKsubroutine for each combination of problem class and

solution option.

Chapter 4 is conc1uded by sect ion 4.5 on MATLABand section 4.6 on EISPAC

(note the missing "K"). These are two software products which faciliate the

use of EISPACKon the EKS-CYBERor the TSO systems, respectively.

It is suggested that the casual user study Sections 4.2, 4.3, and 4.4, and

that Sections 4.5 and 4.6 be read only if needed.
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4.2 Eigenvalue Software on RCSComputers

EISPACK based software for solving eigenvalue problems is available in
several forms on the different BCS systems. As already mentioned in the

introduction, there are

(1) BCSLIB, which includes subroutines derived from EISPACK,

(2) EISPACKitself, which BCSsupports as one of its "Speciality

Mathematical Libraries",

(3) the EISPAC control program on IBMMVS/TSOsystems,

(4) the interactive MATLABprogram on EKSCYBERcomputers.

Themain concern of this documentis of course EISPACKproper. However, there

are situations for which the other forms of the eigenvalue software may be

more appropriate.

The scope of the subroutines in BCSLIB is more limited than the scope of
those in EISPACK. The BCSLIB subroutines are driver subroutines which call

the most frequently used EISPACK subprograms. As such they are almost

identical to the corresponding EISPACK drivers to be discussed in the next

section. The following table gives an overview of the available subroutines:

Table 4.1. BCSLIB subprograms for the eigenvalue problem.
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Precision Ax=AX Ax=AX Ax=ABx Ax=ABx

A general A symmetric A,B, general A symmetric,

(A Hermitian) B sYmmetric positive

definite

REAL HSGEEV HSSYEV HSGEGV HSSYGV

DOUBLE HDGEEV HDSYEV HDGEGV HDSYGV

COMPLEX HCGEEV HCHIEV

COMPLEXd6 HZGEEV HZHIEV



There are two solution options for each subroutine:

(1) compute all the eigenvalues or

(2) compute all the eigenvalues and eigenvectors.
Every eigenvalue problem from section 2.3 and 2.4 could be solved with these
subroutines. There are several good reasons why one shou1d use the BCSLIB
routines:

They are more commonlyavailable. BCSLIBis installed on all major
BCSmachines, whereas EISPACKis only available on EKSand TSO.
The BCSLIBroutines are more easily accessed. BCSLIBis the default

library (except on PDPcomputers) and automatically searched when a

Fortran program is loaded. Thus a call statement is all that is
needed to use the BCSLIBsubroutines.

They are just as reliable as their EISPACKcounterparts.

They provide simpler complex matrix storage.

More comprehensi ve error report ing by the BCSLIB standard error
handler.

For these reasons, use of the BCSLIB routines is recommended. Resort i ng to

EISPACKsubroutines is only necessary in the following cases:

when a special problem has to be solved, one which cannot be

treated by the BCSLIB routines, or
when efficiency is the primary concern of the user, or

when the user wants to utilize the better acccuracy in the smaller

eigenvalues, which is obtained by using certain EISPACK

routines.

Since the EISPACK routines are more specialized than the BCSLIBroutines,

they will probably solve special problems faster and with less storage (see

chapters 2 and 3). Also, note that there is a minor difference between BCSLIB

and EISPACKin the storage mode for complex matrices and savings in storage

may be realized by using the EISPACKroutines.

If BCSLIB routines are chosen, it is recommended that the double precision

versions be used on IBM, VAX, and PDP systems. The single precision version

is sufficient for most scientific applications on CYBER and CRAYsystems,

and is therefore the only version available on these systems.
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4.3 Organization of EISPACK

(adapted from [5])

EISPACKcontains 13 drivers, each intended for a different type of matrix.
Twelve of the drivers provide two options: compute all the eigenvalues or

compute all the eigenvalues and eigenvectors. One of the drivers computes

all the eigenvalues and only some of the eigenvectors of a symmetric matrix.

Seven of the drivers solve the standard eigenvalue problem involving a single
real matrix A. These seven drivers are:

Two of the drivers solve the standard eigenvalue problem for complex
matrices:

Driver

CG

CH

Problem

Ax=)..x

Ax=)..x

Matrix A

complex general

complex Hermitian

28

Driver Problem Matrix A

RG Ax="AX real general
RS Ax=)..x real symmetric

RSM Ax=)..x symmetric; all values, some vectors
RSB Ax=)..x symmetric band
RSP Ax=)..x symmetric packed
RST Ax=)..x symmetric tridiagonal
RT Ax="AX sign-symmetric tridiagonal

Four of the drivers solve generalized eigenvalue problems:

Driver Problem Matrix A Matrix B

RGG Ax=)..Bx real general real general
RSG Ax=)..Bx symmetric symmetric, pos.def.
RSGAB ABx=)..x symmetric symmetric, pos.def.
RSGBA BAx=)..x symmetric symmetric, pos.def.



These driver subroutines provide easy access to many of EISPACK's

capabilities. The user who is satisfied with these capabilities, and whose

problems do not make heavy demands for computer time and storage, need not be

concerned with any further details of EISPACKorganization.

The drivers are actually just IIshellll subroutines which may call as many as

four other EISPACK subroutines to do the actual computations. Severa1 of
these other subroutines are used by more than one driver. On the other hand

some subroutines are not used by any of the drivers. Some of these routines

provide alternative methods for doing some of the computations and the others

provide specialized capabilities not covered by the drivers.

In addition to the drivers there are 58 subroutines in EISPACK.This

modularization greatly reduces both the amount of source and object code that

must be handled. It also provides opportunities for using EISPACK

capabilities in computations not envisioned during the original development.
However, the user who desires access to these capabilities is faced with a
formidable list of subroutines.

The efficient and accurate solution of a matrix eigenvalue problem
usually involves at least two of the following steps:

Initial Scaling. An operation known as balancing that is applied to

nonsYmmetricmatrices to reduce roundoff errors in subsequent calculations.

Reduction. Similarity transformation to a tridiagonal matrix in the

sYmmetric case, or Hessenberg matrix in the nonsymmetric case (see 2.6).

Eigenvalue Iteration. Any of several iterative processes to compute the
eigenvalues of the reduced matrix.

Eigenvector calculation. Any of several different methods to find
eigenvectors of the reduced matrix.

Back transformation. Application of the inverse of the original
reduction transformation to the matrix of eigenvectors.

Back scaling. Application of the inverse of the balancing transformation
to the matrix of eigenvectors.
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4.4 Choosing EISPACKSubroutines

For those specialized problems for which there are no drivers provided in
EISPACK,the user has to select several subroutines, each of which performs
one of the step~ of the computational process as explained in the last

section. A group of these subroutines is referred to as a path. The following
tables list the EISPACKpath for each combination of problem class (as
discussed in chapter 2) and solution option (as discussed in chapter 3).
Wheneverappropriate, BCSLIB routines (*) and EISPACKdrivers (+) are
listed. The alternatives are denoted by numbers, the smallest number

corresponding to the most preferable choice. If a problem/option combination

does not appear in the tables, then this combination is either meaningless,
or no appropriate routines are provided.

If EISPACKsubroutines are accessed on BCSsystems as explained in 5.2.2 and

5.3.2 the user obtains the single precision version on MAINSTREAM-EKS/VSP

systems and the REAL*8(long word) version on IBMMVS/TSOsystems. These are

the appropriate versions for scientific computations on the corresponding
computers.
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4.4.1 Standard Eigenvalue Problem for Real General Matrices

Solution option

All eigenvalues

All ei genva1ues

and some eigen-
vectors

All eigenvalues

and all eigen-
vectors

Alternative I:

Alternative II:

Subroutines

l)HSGEEV (HDGEEV)*

2)RG+

3)BALANC

ELMHES

HQR

BALANC

ELMHES

HQR

INVIT

~LMBAK
BALBAK

l)HSGEEV (HDGEEV)*

2)RG+

3)BALANC

ELMHES

ELTRAN

HQR2

ELMBAK

BALBAK

Remarks

RG is equivalent to HSGEEV.

This path is equivalent to RG.

RG is equivalent to HSGEEV.

This path is equivalent to RG.

The subroutines In general slower computation,

ELMHES,ELTRAN,ELMBAKbut better numerical properties
can be replaced by in some cases.
ORTRES,ORTRAN,ORTBAK

BALANCand BALBAKmay Only for well scaled problems,
be omitted. but not recommended.
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4.4.2 Standard Eigenvalue Problem for Real Symmetric Matrices

Solution option

A11 ei genva 1ues

Subroutines

l)HSSYEV (HDSYEV)*

2)RS+

3)TREDl

TQL1

4)TREDl

I MTQL1

5)TREDl

TQLRAT

Remarks

RS is equivalent to HSSYEV.

This path is equivalent to RS.

Useful for higher accuracy in the

smaller eigenvalues for matrices
with wide variation in the size of

the eigenvalues.

Faster than TQLl, but requires one
extra vector storage.

A11 ei genva 1ues

and some eigen-
vectors

TREDI

IMTQLV

TINVIT

TRBAKI

All eigenvalues

and all eigen-

vectors

l)HSSYEV (HDSYEV)*

2)RS+

3)TRED2

TQL2

4)TRED2

IMTQL2

RS is equivalent to HSSYEV.

This path is equivalent to RS.

See 4) above.

The largest or

smallest eigen-
values

1)TREDl

TRIDI B

2)TRED1

RATQR

See 2.2.4 of [1]

32



The largest or
smallest eigen-
values and corres-

ponding eigen
vectors

1)TREDI

TRIDIB

TINVIT

TRBAK1

2)TREDI

RATQR

TINVIT

TRBAK1

See 2.2.4 of [1]

All eigenvalues
in a specified
interval

TREDI

BISECT

All eigenvalues

in a specified
interval and

corresponding

eigenvectors

l)TREDl

BISECT

TINVIT

TRBAK1

2 )TRED1

TSTURM

TRBAKI

TSTURM uses one array more than

-, BISECT,but less storage for
integers.
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4.4.3. Standard Eigenvalue Problem for Real Symmetric Packed Matrices.

Solution option

All eigenvalues

Subroutines

l)RSP+

2 )TRED3

TQL1

3)TRED3

I MTQL1

4)TRED3

TQLRAT

Remarks

This path is equivalent to RSP.

Useful for higher accuracy in the

smaller eigenvalues for matrices
with wide variation in the size of

the eigenvalues.

Faster than TQL1,but requires one

extra vector storage.

All eigenvalues

and some eigen-
vectors

TRED3

IMTQLV

TINVIT

TRBAK3

All eigenvalues

and all eigen-
vectors

l)RSP+

2)TRED3

TQL2

3)TRED3

IMTQL2

This path is equivalent to RSP.

See 3) above.

All other options
listed for real

symmetric matrices

Use the corresponding
paths for real

symmetric matrices

and replace

TREDl with TRED3, and

TRBAKl with TRBAK3.

See corresponding remarks
for real symmetric matrices.
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4.4.4. Standard Eigenvalue Problem for Real Symmetric Banded Matrices.

Solution option

All eigenvalues

Subroutines

l)RSB+

2)BANDR

TQL1

3)BANDR

IMTQL1

4)BANDR

TQLRAT

Remarks

This path is equivalent to RSB.

Useful for higher accuracy in the

smaller eigenvalues for matrices
with wide variation in the size of

the eigenvalues.
Faster than TQL1, but requires one
extra vector storage.

All eigenvalues

and some eigen-
vectors

BANDR

IMTQLV

TI NV IT

BANDV

Input matrix must be saved before

call to BANDRfor later use by
BANDV.

All eigenvalues

and all ei gen-
vectors

l)RSB+

2)BANDR

TQL2

3)BANDR

IMTQL2

This path is equivalent to RSB.

See 3) above.

All other options
listed for real

symmetric matrices

Use the corresponding
paths for real
symmetric matrices

and replace

TREDl with BANDR,and

TRBAKl with BANDV.

See corresponding remarks

for real symmetric matrices.
See remark about BANDVabove.
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The eigenvalue
closest to a

shift T

BQR BQRcan be called repeatedly
to find several different

eigenvalues.

BQRis less reliable than BANDR

and BISECT, but it may be faster.

The eigenvalue BQR
closest to a shift T BANDV

and corresponding

eigenvector

See remarks above.
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4.4.5 Standard Eigenvalue Problem for Real Symmetric Tridiagonal Matrices

Solution option

All eigenvalues

Subroutines

l)RST+
2)TQL1

3) IMTQL1

4)TQLRAT

Remarks

Useful for higher accuracy in the

smaller eigenvalues for matrices
with wide variation in the size of

the eigenvalues.

Faster than TQLl, but requires one
extra vector storage.

All eigenvalues

and some eigen-
vectors

IMTQLV

TINVIT

All eigenvalues

and all ei gen-
vectors

l)RST+

2)TQL2

3) IMTQL2 See 3) above.

All other options
listed for real

symmetric matrices

Use the corresponding

paths for real
symmetric matrices
and omit all

occurences of TREDI

and TRBAKI.

See corresponding remarks

for real symmetric matrices.

The eigenvalue Use BQRor BQR+BANDVSee corresponding remarks
closest to a shift for this special case in 4.4.4.
T with/without the

corresp. vector
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4.4.6
Matrices

Standard Eigenvalue Problem for Real Sign-Symmetric Tridiagonal

Solution option

All eigenvalues

Subroutines

l)R'-+

2)FIGI
TQL1

3)FIGI

IMTQL1

4)FIGI

TQLRAT

Remarks

This path is equivalent to RT.

Useful for higher accuracy in the

smaller eigenvalues for matrices
with wide variation in the size of

the eigenvalues.
Faster than TQL1,but requires one

extra vector storage.

All eigenvalues

and some eigen-
vectors

FIGI

IMTQLV

TINVIT

BAKVEC

All eigenvalues

and all eigen-
vectors

l)RT+

2)FIGI2

TQL2

3)FIGI2

IMTQL2

This path is equivalent to RT.

See 3) above.

All other options
listed for real

symmetric matrices

Use the corresponding

paths for real

symmetric matrices

and replace
TREDlwith FIGI, and
TRBAKl with BAKVEC.

See corresponding remarks

for real symmetric matrices.
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4.4.7 Standard Eigenvalue Problem for ComplexGeneral Matrices

Solution option

All eigenvalues

All eigenvalues

and some eigen-
vectors

All eigenvalues

and all ei gen-
vectors

Alternat i ve I:

Alternat i ve II:

Subroutines

l)HCGEEV (HZGEEV)*

2)CG+

3)CBAL
COMHES

COMLR

CBAL

COMHES

COMLR

CINVIT

CBAK2

l)HCGEEV (HZGEEV)*

2)CG+

3)CBAL

COMHES

COMLR2

CBAK2

The subroutines

COMHES,COMLR,COMLR2,

and COMBAKcan be

replaced by CORTH,

COMQR,COMQR2,and

CBAK2.

CBAL and CBAK2may
be omitted.

Remarks

CG is equivalent to HCGEEV.

This path is equivalent to CG.

CG is equivalent to HCGEEV.

This path is equivalent to CG.

In general slower computation,

but better numerical properties
in somecases.

Only for well scaled problems -
not recommended.
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4.4.8 Standard Eigenvalue Problem for ComplexHermitian Matrices

Solution option

All eigenvalues

Subroutines

l)HCHIEV (HZHIEV)*
2)CH+

3)HTRIDI

TQU

4)HTRIDI

IMTQU

5)HTRIDI

TQLRAT

Remarks

CH is equivalent to HCHIEV.

This path is equivalent to CH.

Useful for higher accuracy in the

smaller eigenvalues for matrices
with wide variation in the size of

the eigenvalues.
Faster than TQLl, but requires one
extra vector storage.

All eigenvalues

and some eigen-
vectors

HTRIDI

IMTQLV
TINVIT

HTRIBAK

All eigenvalues

and all ei gen-
vectors

l)HCHIEV (HZHIEV)*

2)CH+

3)HTRIDI

TQL2

HTRIBK

4) HTRIDI

IMTQL2

HTRIBK

CH is equivalent to HCHIEV.

This path is equivalent to CH.

See 4) above.

All other options
listed for real

symmetric matrices

Use the corresponding

path, but substitute
HTRIDI for TREDl, and

HTRIBK for TRBAKI.

See corresponding remarks
in section 4.4.2.
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4.4.9 Standard Eigenvalue Problem for Complex Hermitian Packed Matrices

Solution option

All solution

options listed

for real symmetric

packed matrices

Subroutines

Use the corresponding
paths for real symm.

packed matrices and
replace

TRED3 by HTRID3, and

TRBAK3by HTRIB3.

Remarks

See the corresponding remarks
in section 4.4.3.

There is no EISPACKdriver for

this problem class.

4.4.10. Real Generalized Eigenvalue Problem.

Solution option

All eigenvalues

Subroutines

l)HSGEGV (HDGEGV)*

2)RGG+

3)QZHES

QZIT

QZVAL

Remarks

RGGis equivalent to HSGEGV.

This path is equivalent to RGG.

All eigenvalues

and eigenvectors

Same as above, but

in path 3) add the

subroutine QZVEC

after QZVAL.

No paths for partial eigen-

systems are recommended.
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4.4.11 Generalized Real Symmetric Eigenvalue Problem

Solution option

All eigenvalues

Subroutines

l)HSSYGV (HDSYGV)*

2)RSG+

3)REDUC

TREDl

TQLRAT

4)REDUC

TREDl

IMTQU

5)REDUC

TRED1

TQU

Remarks

RSG is equivalent to HSSYGV

This path is equivalent to RSG.

See remarks about TQL1, IMTQL1,

and TQLRATin section 4.4.2.

All eigenvalues

and some eigen-
vectors

REDUC,TRED1,IMTQLV,

TINVIT, TRBAK,

REBAK

All eigenvalues

and all eigen-
vectors

l)HSSYGV (HDSYGV)*

2)RSG+

3)REDUC,

TRED2,TQL2,REBAK

4)REDUC,TRED2,IMTQL2,

REBAK

RSG is equivalent to HSSYGV.

This path is equivalent to RSG.

See remarks above.

All other options
listed for real

symmetric matrices

Use the corresponding See corresponding remarks
path, and add REDUCat in section 4.4.2.

the beginning of each

path. Add REBAKat the
end for eigenvectors.
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4.4.12 The AB Problem

Solution option

All eigenvalues
and all or none

of eigenvectors

Subroutines
RSGAB+

Remarks

All other options
listed for the

generalized real

symmetric problem

Use the correspon-

ding path from
4.4.11, but replace
REDUC by REDUC2

See 4.4.11.

4.4.13. The BAProblem.

Solution option

All eigenvalues

and all or none

of eigenvectors

Subroutines

RSGBA+

Remarks

All other options
listed for the

generalized real

symmetric problem

Use the correspon-

ding path from
4.4.11, but replace

REDUC by REDUC2, and

REBAK by REBAKB.

See 4.4.11.
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4.4.14 The Singular Value Decomposition

Solution option Subroutine

All singular SVD
values and vectors

Remarks

For real general and real rectan-

gular matrices only.

For complex general matrices see
subroutines in LINPACK[7].

Solution of linear MINFIT

least squares

problems

See [2], section 2.4.2.
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4.5 MATLAB

MATLABis an interactive computer program available only on EKS CYBER

computers. It serves as a convenient way to test computations involving

matrices. In particular, MATLAB can provide quick solutions to eigenvalue

problems for small matrices (less than 20 by 20). MATLABprovides easy access
to the corresponding EISPACK subroutines. No Fortran driver program is
needed.

To access and execute MATLAB,enter the EKSjob control statements:

ATTACH,MATLAB/UN=EKSAPP,M=E.
MATLAB.

The HELP command in MATLABgives information about the MATLABcapabilities.

HELP INTRO will list an introduction to formatting conventions for matrices

and vectors. Of interest for eigenvalue/vector calculations are the commands:

EIG(X) produces a diagonal matrix D of eigenvalues of the
matrix X, and a full matrix V of corresponding

eigenvectors.

singular value decomposition in matrices U,S, andV.SVD(X)

A file with the brief description of the symbols and commands of MATLABcan

be printed with the following control statements:

GET,HELPMAT/UN=EKSAPP.

ROUTE,HELPMAT,DC=PR,PS,MB=mailbox,UN=RJEuser number.

For more information see the Mainstream EKS Application Memo 60-006, the

Newsletter article on MATLAB (Vol.? No.1), or contact the consultants (see

sect i on 1. 3 . 2) .
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4.6 The EISPACKControl Program EISPAC

The EISPACKcontrol programEISPACis available on the TSOsystem. EISPACis
designed to simplify the solution of eigenvalue problems with EISPACK. The

user describes a problem to EISPAC in simple familiar terms. EISPAC then

chooses the appropriate EISPACK path automatically and executes the
subrout i nes in proper order, pass i ng parameters from one subroutine to the

next in the proper way. EISPAC has most, but not all of the capabil ities
provided by the individual EISPACKsubroutines. However, EISPACrelieves the

user of having to develop a detailed knowledge of the applicability,

efficiency, and calling sequences of the individual EISPACKsubroutines.

More information about EISPAC is provided in [1] and [2]. To obtain usage

documentation for EISPAC follow the directions in section 5.3.1 and use the

name EISPACDC in the name card. The EISPAC control program is obtained from

the EISPACKlibrary as shown in section 5.3.2.
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5.0 How to Access EISPACK

5.1 General Remarks

Subprograms in BCSLIBdo not require any special access instructions, since
BCSLIBis the default library on any BCS system (EKS, TSO, VAX, and PDP). To

access the BCSLIB subroutines it is sufficient to include the corresponding

CALLstatements in the user's FORTRANcode.

5.2 MAINSTREAM-EKS/YSPGyber and Gray Systems

5.2.1 Accessing EISPACKSubprogramDocumentation

EISPACKsubprogramdocumentation is contained in an UPDATEprogram 1ibrary

which is available on tape. The folowing job accesses the tape and extracts

the documentation for individual subprograms.
DOCJOB.

USER,usernum,passwrd. name/phone/location

LABEL,T,SI=MTHPROD,UN=EKSAPP.

COPYBF,T,OLDPL.

RETURN,T.

UPDATE,Q,D,L=l,Y.*C,sublist

COPY,COMPILE,OUTPUT.

Here sublist is the list of names of those subprograms whose documentation is

desired. The names are separated by commas. For example, to obtain

documentation for subprograms RG and CG use the UPDATEstatement

UPDATE,Q,D,L=l,Y.*C,RG,CG

If all the names will not fit on one UPDATEstatement (80 characters max),

the pair of statements

UPDATE,Q,D,L=l,Y.*C,sublist

COPY,COMPILE,OUTPUT.

may be repeated as often as needed with a new sublist.

If all EISPACK documentation is desired (approximately 500 pages), use the

UPDATEstatement

UPDATE,Q,D,L=l,Y.*C,BAKVEC.TSTURM
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5.2.2 Accessing EISPACKas a SubprogramLibrary

EISPACKis available in both FTN4and FTN5compatible libraries on the Cyber
system and in a CFTcompatible library on the Cray system. These libraries

may be accessed as follows:
FTN4 library: ATTACH,EISLIBF/UN=EKSAPP.

FTN5library: ATTACH,EKSLIB5/UN=EKSAPP.

CFT library: ACCESS,DN=EISLIBC,UN=EKSAPP.

Use of the EISPACK library requires its mention on a loader control statement

in addition to one of the above 1ibrary access statements. On the Cyber

system, this can be done with the U parameter on the LOADXEQstatement or the

LIB parameter on the LDSETstatement. On the Cray system, it can be done with

the LIB parameter on the LORstatement. The subroutines accessed in this way

are single precision.

5.3 IBMMVS/TSOSystems
5.3.1 Accessing Documentation for a Specific Subroutine

EISPACKsubroutine usage documentation can be accessed with the following JCL
and control cards:

II EXECMATHLIST

IISYSIN DO *
SELECT (select card)

Sn1 Sn2 ... (name card,columns 1-72 only)

where SELECTis in columns 1-6. Sn1 Sn2 ... are the names of the subroutines
whose usage documentation is desired, with DC appended on the end of each

name, and the names separated by one or more blanks. For example, use

BISECTDCto obtain documentation for subroutine BISECT. Use as many cards as
needed (columns 73-80 are ignored).

To list all the EISPACKsubroutine documentation, use only a select card with
the word ALL in columns 1-3 in place of the word SELECT,and do not use any

name cards. Use ALL with discretion. The complete documentation has about 500
pages.
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5.3.2 Accessing EISPACKas a Subroutine Library

The EISPACK library may be used with Fortran programs compiled by any of the

IBM standard or program product Fortran compilers. For example, the EISPACK

library would be used with the FORTRANH extended compiler as follows:

II EXECFORTXCLG,LIB3='ENG.MATH.EISPACK2'

IIFORT.SYSIN DO *
the FORTRANsourcedeck

IIGO.SYSINDO *
the input data

The significant point in this example is adding

,LIB3='ENG.MATH.EISPACK2'

to the EXECcard.

Two or more Math/Stat Speciality Libraries may be accessed jointly as

follows:

II EXECFORTXCLG

IIFORT.SYSIN DO *
the FORTRANsource deck

IILKED.SYSLIB DO

II DO

II DO DISP=SHR,OSN=ENG.MATH.EISPACK2

II DO OISP=SHR,OSN=ENG.MATH.LEVELTWO
IIGO.SYSIN DO *

the input data
The subroutines accessed in this way expect all real variables to be of type
REAL*8.

If the EISPACcontrol program is used the sequence is:

II EXECFORTCLG,LIB3='ENG.MATH.EISPACK2'

IIFORT.SYSIN DO *
the FORTRANsource deck

IIGO.EISPACLBDO DSN=ENG.MATH.EISPACK2,OISP=SHR
IIGO.SYSIN DO *
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6.0
6.1

Returns from EISPACK

A Frequent Source of Problems

A frequent source of problems for users of linear algebra software including

EISPACK is the way doubly dimensioned arrays are handled by FORTRAN

subroutines. The majority of the problems reported by EISPACK users can be

traced to either incorrectly dimensioned arrays in the calling program, or

incorrect use of the "row dimension" parameter in the calling sequence of

EISPACKroutines. Users who encounter this problem should consult section

1.4.3. in the BCSLIB manual, or the short note on "'Row Dimension' in Matrix

Algebra Software II in the Newsletter (Vol.2 No.2).

6.2. Error Returns from EISPACK.

A summary of error returns from EISPACKsubroutines is given in the following

table (from [2]). Note that for certain nonzero values of IERR some

meaningful results may have been obtained. More information on the particular

errors can be found in the documentation of the subroutine in question.

IERR SUBROUTINES

MINFIT, QZIT,

RGG,RSB,RSG,

RSGAB,RSGBA,

SVD,TQLRAT,

TQL2

EISPAC

MESSAGE

00

SIGNIFICANCEOFTHEERROR

The calculation of the i-th eigen-

value or singular value failed to

converge. If MINFIT,QZIT(with

QZVAL),RGG,or SVD was being used,
the eigenvalues or singular values
i+1,i+2,...N should be correct;

otherwise the eigenvalues 1,2,..i-1
should be correct. No eigenvectors

i

1<i<n

are correct.
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IERR

N

3N+l

7N+l

-i
l<i<N

ION

12N

SUBROUTINES

BQR

BISECT

REDUC,REDUC2,

RSG,RSGAB,

RSGBA

BANDV,TINVIT

RGG,RSB,RSG,

RSGAB,RSGBA

RSB

EISPAC

MESSAGE

03

07

50

SIGNIFICANCE OF THE ERROR

The calculation of the eigenvalue

failed to converge.

The parameter MMspecified insufficient

storage to hold all the eigenvalues in

the interval (RLB,RUB). The only use-

ful result is M, which is set to the

number of eigenvalues in the interval.

The matrix BR is not positive definite

as required in the real symmetric gene-

ralized paths. No useful results are

produced.

The calculation of one or more of the

eigenvectors including the i-th vector

failed to converge; these vectors are

set to zero. These failures may be

caused by insufficient accuracy in the

corresponding eigenvalues. All non-zero

eigenvectors and their corresponding

eigenvalues should be correct.

The parameter N specifying the order of

the input matrix or system exceeds the

dimension parameter NM. No results are

produced.

Either the parameter MBspecifying

the (half) band width is non-positive
or it exceeds the matrix order N. No

results are produced.
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6.3, The Accuracy of the ComputedResults

(adapted from [5])

Effective use of the EISPACKsubroutines demands an understanding of the

accuracy one can expect from the computed results. Various sources of errors

may enter the computation:
0 The matrices mayconsist of, or are derived from inexact data.

0 The computation with the fixed precision floating point arithmetic
of the host computer introduces roundoff errors.

Even if these sources of error did not exist, it would not be possible to

compute eigenvalues of general matrices exactly in a finite number of steps.
It can be shownthat no such mathematical algorithm exists.

The best that can be said about the algorithms used by EISPACKto compute

eigensystems is that they are numerically stable. This means that EISPACK

produces the exact answer to an eigenvalue problem involving a matrix A+E

which is a small perturbation of the given matrix A, i.e. the norm of the

perturbation matrix E is roughly the size of roundoff error when compared to
the norm of A. The same can be said for the algorithms based on non-

orthogonal transformations if no exceptional growth in the size of the matrix
elements occurs during the computation.

One immediate consequence of this numerical stability is that the computed

results will produce small residuals. If A and x are a computed eigenvalue
and eigenvector of a given matrix A, then Ax will always be close to Ax. More
precisely the size of the relative residual,

JJAx - AXU

I IAll \Ix I I

can always be expected to be roughly equal to the relative accuracy of

floating point arithmetic on the computer being used.
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But how close are the computed eigenvalues to the exact eigenvaluesI: The

answer to this question depends more on the matrix involved than on the

particular EISPACK subroutine used to do the computation. To see why this is

so, assume that A has a complete, linearly independent set of eigenvectors X

and let D denote the diagonal matrix of eigenvalues. Then
X-lAX= D.

Suppose that A is perturbed somehow,

formation or by roundoff errors generated
X-I(A + E)X = 0 + X-lEX.

The resulting perturbation to D is not diagonal, but this equation makes it

plausible that the damage done by E to the eigenvalues in 0 could be as large

as Ilx-111 IIEII IIXII, rather than merely IIEII. The quantity
k(X) = IIXII Ilx-lll,

the condition number of X, arises in the perturbation analysis for systems of

linear equations. Note that in the eigenvalue problem it is the condition of

X, the matrix of eigenvectors, not of A itself, that is relevant. If A is
real and syrrmetric, then X can be taken to be orthogonal and k(X) with

respect to the 2-norm) is 1. For such matrices A, a small change in the

matrix causes a small change in the eigenvalues. In other words the
eigenvalues of symmetric matrices are always well conditioned.

either by errors in its initial

by EISPACK.Then

In the extreme case where A does not have a full set of eigenvectors, k(X)
should be regarded as infinite. The eigenvalues are infinitely sensitive to

perturbations in the matrix.

With EISPACKthe consequences of this perturbation theory are the following:

For real symmetric matrices, and for complex Hermitian matrices, the

eigenvalues are always computed with an accuracy that corresponds to a few

units of roundoff error in the largest eigenvalue of the matrix. The small
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eigenvalues of the symmetric matrices wi11 not necessarily be computed to

full accuracy relative to the norm of ' the matrix. For symmetric matrices the

presence of multiple eigenvalues has little effect on the accuracy of the

computed results.

For general, nonsymmetric matrices, the effect of the roundoff errors on the

computed eigenvalues will increase as the condition number of the eigenvector
matrix increases. If a nonsymmetric matrix has multiple eigenvalues, or is

close to a matrix with multiple eigenvalues, and its eigenvector matrix has a
large condition number, then the computed eigenvalues may be accurate to less
than full precision.

As an example consider the following matrix.

[
-64 82 21

J
144 -178 -46

-771 962 248

This matrix was constructed in such a way that the exact eigenvalues happen

to be 1, 2, and 3. When the eigenvalues are computed using EISPACK

subroutines on a computer with 24-bit floating point arithmetic, the results
are

1. 00195

2.00113
2.99736

Such a computer has a relative floating point accuracy of better than 10-6,

so the computed eigenvalues have lost half the available figures.

The difficulties lie with the matrix itself, not with EISPACK.The matrix of

computed eigenvectors, renormalized so that the last component of each vector
is one, is

0.090922 0.075114 0.111016

x= 1-0.181810 -0.196554 -0.166741

1.000000 1.000000 1.000000
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The condition number of X is greater than 10-3. A single roundoff error in A,

which on this computer affects the 6-th significant figure, could cause

changes in the 3-rd significant figure of the eigenvalues. EISPACKhas
computed the eigenvalues as accurately as possible using floating point
arithmetic of this accuracy.

As another measure of accuracy, let 0 be the diagonal matrix whose diagonal

elements are the computedeigenvalues. Then

llAX - XDU = 0.13dO-6
IIAII Ilxll

In other words, the relative residuals are on the order of roundoff error,

even though the eigenvalues are accurate to only three figures. For further

information on the perturbation theory for the eigenvalue problem, see [8].
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Appendix A. Programmed Instructions for Using the EISPACKGuide.

STEP1 : IDENTIFIYYOUR EIGENVALUE PROBLEM

Instructions: Read sections 2.1, 2.2, and 2.3 and decide

following problem classes your eigenvalue problem belongs:
Real General

Real SYmmetric

Real SYmmetric Packed

Real SYmmetric Tridiagonal

Real Sign-SYmmetric Tridiagonal

to which of the

Complex General

Complex Hermitian

Complex Hermitian Packed

Generalized Real

Generalized SYmmetric

AB - Problem

BA - Problem

Singular Value Decompositon

If your problem does not fall into any of the classes listed above, or if you

have difficulties in classifying the problem, call the consultants (see
section 1.3.2).

56



STEP2: DETERMINEYOURCOMPUTATIONALTASK

Instructions: Read Chapter 3 and decide which of the following solution

options you want to choose:

A)

B)

C)

D)

E)

All eigenvalues
All eigenvalues and some selected eigenvectors
All eigenvalues and all eigenvectors

The largest or smallest eigenvalues

The largest or smallest eigenvalues and the corresponding

eigenvectors

The eigenvalues in

The eigenvalues in

eigenvectors.

F)

G)

a specified interval

a specified interval and the corresponding

Note that the solution options D-G apply only to symmetric (Hermitian,

generalized symmetric) eigenproblems.

There are no options to choose from for the singular value decomposition.
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-- - - c -

STEP3: FIND THE APPROPRIATESUBROUTINE(S)

Instructions: Read sections 4.1 and 4.2. Then use the tables in section 4.4

to find the appropriate subroutine(s) for the given problem/solution option
combination.

If no subroutines are listed for the given combination, then go back to STEP

2 and choose a more general so1ut i on opt ion, or call the consu1tants (see

section 1.3.2).

If several possibilities are listed for the given combination, then choose

the subroutine(s) listed first.

STEP4 : OBTAINACCESSINFORMATIONANDDOCUMENTATION

Instructions: Read Chapter 5 and determine how the desired subroutines are

accessed on the computer system you are using.

If you have problems accessing EISPACK, or if the desired subroutines are not

available, call the consultants (see section 1.3.2).

If needed, obtain documentation on the EISPACK subroutines as described in

Chapter5.
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STEP 5 : WRITE YOUR PROGRAMUSING THE SELECTED SUBROUTINES AND TEST IT

If you have any problems, consider the remarks in Chapter 6, or call the

consultants (see section 1.3.2).

Use the computed results for your purposes, keeping the remarks in section
6.3 in mind.
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